- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0002000001000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Morgan, Harith (3)
-
Arrieta, Andres F. (2)
-
Osorio, Juan C. (2)
-
Arrieta, Andres_F (1)
-
Osorio, Juan_C (1)
-
Rincon, Jhonatan_S (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Soft robots are distinguished by their flexibility and adaptability, allowing them to perform nearly impossible tasks for rigid robots. However, controlling their behavior is challenging due to their nonlinear material response and infinite degrees of freedom. A potential solution to these challenges is to discretize their infinite‐dimensional configuration space into a finite but sufficiently large number of functional modes with programmed dynamics. A strategy is presented for co‐designing the desired tasks and morphology of pneumatically actuated soft robots with multiple encoded stable states and dynamic responses. This approach introduces a general method to capture the soft robots' response using an energy‐based analytical model, the parameters of which are obtained using Recursive Feature Elimination. The resulting lumped‐parameter model enables the inverse co‐design of the robot's morphology and planned tasks by embodying specific dynamics upon actuation. This approach's ability to explore the configuration space is shown by co‐designing kinematics with optimized stiffnesses and time responses to obtain robots capable of classifying the size and weight of objects and displaying adaptable locomotion with minimal feedback control. This strategy offers a framework for simplifying the control of soft robots by exploiting the mechanics of multistable structures and embodying mechanical intelligence into soft material systems.more » « less
-
Morgan, Harith; Osorio, Juan C.; Arrieta, Andres F. (, 6th IEEE-RAS International Conference on Soft Robotics (RoboSoft))
-
Osorio, Juan C.; Morgan, Harith; Arrieta, Andres F. (, 2022 IEEE 5th International Conference on Soft Robotics (RoboSoft))
An official website of the United States government
